

Fig. 11
Fig. 11 shows a sketch of the circle with equation $(x-10)^{2}+(y-2)^{2}=125$ and centre C. The points A, B, D and E are the intersections of the circle with the axes.
(i) Write down the radius of the circle and the coordinates of C .
(ii) Verify that B is the point $(21,0)$ and find the coordinates of A, D and E .
(iii) Find the equation of the perpendicular bisector of BE and verify that this line passes through C.

2 Fig. 10 shows a sketch of a circle with centre $\mathrm{C}(4,2)$. The circle intersects the x-axis at $\mathrm{A}(1,0)$ and at B .

Fig. 10
(i) Write down the coordinates of B .
(ii) Find the radius of the circle and hence write down the equation of the circle.
(iii) AD is a diameter of the circle. Find the coordinates of D .
(iv) Find the equation of the tangent to the circle at D . Give your answer in the form $y=a x+b$.

3 The circle $(x-3)^{2}+(y-2)^{2}=20$ has centre C.
(i) Write down the radius of the circle and the coordinates of C.
(ii) Find the coordinates of the intersections of the circle with the x - and y-axes.
(iii) Show that the points $\mathrm{A}(1,6)$ and $\mathrm{B}(7,4)$ lie on the circle. Find the coordinates of the midpoint of AB . Find also the distance of the chord AB from the centre of the circle.

4 A circle has diameter d, circumference C, and area A. Starting with the standard formulae for a circle, show that $C d=k A$, finding the numerical value of k.

5 A circle has equation $(x-2)^{2}+y^{2}=20$.
(i) Write down the radius of the circle and the coordinates of its centre.
(ii) Find the points of intersection of the circle with the y-axis and sketch the circle.
(iii) Show that, where the line $y=2 x+k$ intersects the circle,

$$
\begin{equation*}
5 x^{2}+(4 k-4) x+k^{2}-16=0 \tag{3}
\end{equation*}
$$

(iv) Hence find the values of k for which the line $y=2 x+k$ is a tangent to the circle.

